
Macroion correlation effects in electrostatic screening and thermodynamics
of highly charged colloids

R. Castañeda-Priego,1,* L. F. Rojas-Ochoa,1,2 V. Lobaskin,3 and J. C. Mixteco-Sánchez1

1Instituto de Física, Universidad de Guanajuato, Loma del Bosque 103, 37150 León, Mexico
2Departamento de Física, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, 07360 México D. F., Mexico

3Physik-Department, Technische Universität München, James-Franck-Strasse, D-85747 Garching, Germany
�Received 15 July 2006; published 28 November 2006�

We study macroion correlation effects on the thermodynamics of highly charged colloidal suspensions using
a mean-field theory and primitive model computer simulations. We suggest a simple way to include the
macroion correlations into the mean-field theory as an extension of the renormalized jellium model of Trizac
and Levin �Phys. Rev. E 69, 031403 �2004��. The effective screening parameters extracted from our mean-field
approach are then used in a one-component model with macroions interacting via a Yukawa-like potential to
predict macroion distributions. We find that inclusion of macroion correlations leads to a weaker screening and
hence smaller effective macroion charge and lower osmotic pressure of the colloidal dispersion as compared to
other mean-field models. This result is supported by comparison to primitive model simulations and experi-
ments for charged macroions in the low-salt regime, where the macroion correlations are expected to be
significant.
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I. INTRODUCTION

Structure and thermodynamics of charged colloidal
dispersions became a subject of a renewed interest over
the last decades due to the development of experimental
and theoretical techniques and accumulation of new data in-
compatible with classical theories �1–3�. Considerable
theoretical efforts have been invested into the upgrade of
existing mean-field approaches with inclusion of counterion
or macroions correlations, which are missing in the classical
Poisson-Boltzmann theory.

Whereas in the aqueous dispersions of micrometer-sized
particles the correlations of monovalent counterions are usu-
ally negligible, it is known that they might become important
for small strongly charged macroions �see �3,4� for review�.
The role of counterion correlations has been extensively
studied by various means, including integral equation theo-
ries and molecular simulations starting from the 1980s and is
currently well understood �2–4,6–12�. In contrast, macroion
correlation effects are usually not explicitly included in
mean-field descriptions and therefore not satisfactorily quan-
tified. One can expect these effects to be significant in sys-
tems with thick double layers, such as deionized colloidal
dispersions.

In order to specify our interest in macroion correlation
effects we would like to start from a simple energy argument.
Charged colloidal suspensions are composed of a large num-
ber of particles of different types. If the molecular details of
the solvent and dielectric discontinuities are neglected, one
arrives to the primitive electrolyte model. On this level, a
charged colloidal dispersion is an asymmetric electrolyte
consisting of strongly charged macroions and small counte-
rions. In addition, at least two different species of salt ions
are usually present. A straightforward application of the

Debye-Hückel-like mean-field description is usually not
successful due to strong spatial correlations of different
ionic species. To deal with the correlations, one can attempt
to construct a hierarchy of interactions from a quite general
viewpoint. If we consider a system of macroions and
small ions �including counterions and salt ions� we can
classify the contributions to the potential energy into three
categories: macroion-macroion �MM�, macroion-ion �MI�,
and ion-ion �II�. The relative importance of these terms
can be estimated based on simultaneous consideration
of their magnitudes and distances, on which they act.
Macroions repel each other, so that their interaction energy is
of the order of �uMM ��BZM

2 exp�−�d� /d, the macroion-ion
contribution �uMI��BZMZI exp�−�a� /a, and the ionic part
�uII��BZI

2 exp�−�dI� /dI. Here, �B=e2 / �4���0kBT� is the
Bjerrum length, �−1=kBT the thermal energy, kB the Boltz-
mann constant, T the temperature, ZM and ZI the macroion
and ion valence, respectively, and a the macroion radius.
Also, �= �4��B�nZM +2ZI

2nI��1/2 is the Debye-Hückel
screening parameter, n and nI the macroion and ion number
densities, respectively, cs the molar salt concentration, and
d=n−1/3 and dI=nI

−1/3= �1000NAcs+nZM�−1/3 the mean
macroion-macroion and ion-ion distance, respectively. Set-
ting ZM =1000, ZI= ±1, cs=1 mM, a=100 nm, and the mac-
roion volume fraction to 0.01, we get �uMM �3�10−30,
�uMI�3�10−4, and �uII�3�10−2. From this quick esti-
mate, one can conclude that for �a�1 the two latter contri-
butions dominate the system thermodynamics. When the
charge sign is taken into account, the negative MI contribu-
tion starts prevailing in the total energy, as the significant
part of II contribution; consisting of nearly equal number of
terms of opposite signs, cancels itself out. Due to the strong
screening, the thermodynamic properties of such dispersion
do not differ much from a simple electrolyte, except for a
small layer of thickness �−1 around the macroion surface.
One observes a very different picture in the regime of thick
double layers, �a	1. A similar estimate for cs=1 
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�uMM �80, �uMI�5, and �uII�4�10−3. If this energy per
ion is weighted by the corresponding number of species, the
MI contribution dominates so that the total Coulomb energy
becomes negative �5�. We can also see that the II interactions
are unlikely to influence the dispersion properties in case of
monovalent ions. The first two contributions, however, have
to be taken into account. The natural and common way of
dealing with this situation involves �i� solving the Poisson-
Boltzmann �PB� equation for ions around a single macroion,
�ii� renormalization of the MM interaction parameters based
on the Debye-Hückel-like approximation for the long-
distance part of the double layer, and �iii� solution of the
one-component MM model �OCM� with an effective interac-
tion potential ueff �5,13,14�. This procedure maintains the
leading role of the MI interaction, while the effect of MM
correlations enters only at the level of the OCM description.
The latter approach can be modified in different ways to
account for a more pronounced role of the macroion corre-
lations, and the resulting charge inhomogeneities, using the
Wigner-Seitz cell model. In this case, the structure of the
double layer reflects the inhomogeneous macroion �and
hence the counterion� distribution via the cell construction.
Numerical schemes based on the cell model and charge
renormalization have been successful in describing proper-
ties of strongly correlated charged colloidal dispersions
�5,13,14�.

An alternative route to include the macroionic contribu-
tion into the electrostatic screening is based on the jellium
approximation for macroions �15,16�. Although the range
of validity of the jellium model might be limited to
weakly correlated macroion systems, this model can
be easily extended to different situations, i.e., rod-like
colloids �19� or asymmetric electrolytes and, particularly, its
equation of state takes a simple analytical form �see Eq. �3�
below�.

We further follow the jellium description, which
we extend using a simple construction that introduces
spatial macroion correlations. Our goal is to study the
effect of macroion correlations on the parameters of the
OCM for highly charged colloidal dispersions and the corre-
sponding dispersion thermodynamics. We pay special
attention to the calculation of the equation of state of such
dispersions. It is known that recovering the accurate equation
of state basing on the OCM formulation alone is problem-
atic, as the ionic degrees of freedom are omitted from the
description. At the same time, information about the ions is
contained in the full theory �5,20,21� used for getting the
effective parameters for the OCM and one can hope to relate
these parameters to the total thermodynamic and structural
properties.

II. MACROION CORRELATIONS ON THE MEAN-FIELD
LEVEL

Although the PB cell and the renormalized jellium
models do not address the macroion degrees of freedom,
they implicitly include a model of macroion distribution.
The cell model supposes well separated particles, where
the role of the neighboring macroions consists of limiting

the volume available for small ions while gMM�r� is
simply zero inside this cell. The double layer inside the
cell is otherwise unperturbed by the rest of the system.
In contrast, the jellium model assumes gMM�r�=1 for
r�2a �diameter of the sphere�, i.e., an ideal gas of
macroions. As we already noted in the Introduction, this
approximation might be unsatisfactory for low-salt colloidal
dispersions, where macroions strongly repel each other
even at the mean interparticle separation. We therefore
will try to avoid considering uniform macroion distributions.
On the simplest level, the uniform distribution can be
replaced by a gMM�r� taken in the form of a step function.
This choice is motivated by the observation that a
charge-stabilized colloidal suspension at low salt shows
a highly structured gMM�r� with a characteristic length-scale
described by the mean interparticle distance
d=n−1/3 �22�. In particular for r�d, gMM�r� is almost zero, a
feature that is known as the correlation hole. The total
charge density in the system at a distance r from the center
of a macroion becomes


�r� = − ZeffengMM�r� + e
+�r� − e
−�r� , �1�

where gMM�r�=0 for r�d, and gMM�r�=1 for r�d; 
±�r� are
the concentrations of salt cations and anions and e is the
elementary charge. We should stress that the correlation hole
approximation for gMM�r� can be justified only for low-salt
systems where the main peak position of gMM�r� scales with
n−1/3. This results from the fact that the repulsive interaction,
u�r�, between two colloidal particles approaching each other
becomes u�r��kBT when r�d. In a more general case, one
should consider a correlation hole of size d* such that the
main peak position scales with it and which should be valid
for higher salt concentrations or weakly charged macroions,
essentially when u�d*��kBT. This point will be addressed
elsewhere �23�.

Our model includes now the dominant part of macroion
correlations by placing a macroion at the center of its corre-
lation hole of a size that depends explicitly on the concen-
tration. The macroion distribution outside this hole is still
approximated by an ideal gas of macroions, as in the jellium
approach �15�. We enforce the smeared-out background
charge Zback representing the other macroions around the
tagged macroion to coincide with the effective charge Zeff, as
in the original work of Trizac and Levin �16�. Then, assum-
ing the solvent as a continuous medium with a dielectric
constant �, the Poisson-Boltzmann equation around the
tagged macroion reads

�2��r� =
4�e

�
�ZbackngMM�r� − 
+�r� + 
−�r�� . �2�

The Zback is determined by the electroneutrality condition for
the total charge density in the bulk, 2cs sinh�e���� /kBT�
=nZback, where ���� represents the electrostatic potential at
infinity. The electroneutrality condition gives the screening
parameter in the form �eff

2 =4��B
�Zback

2 n2+4cs
2 �16�. We,

therefore, call our model a modified jellium model
�m-jellium�.
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At large distances �r→�� the total charge density
given by the right-hand side of Eq. �2� vanishes due to
the electroneutrality requirement. It also defines a value
of the potential far from the tagged macroion ����, which
is known as the Donnan potential �17�. Equation �2� with
this boundary condition can be solved numerically for
r�d, where g�r�=1. To guarantee the continuity of the
electrostatic potential at r=d, we impose the conditions
�−�d�=�+�d� and �−��d�=�+��d�, where � indicates the
value of the potential obtained from Eq. �2� for r�d, which
allows us to calculate the potential inside the correlation
hole. The bare macroion charge can now be obtained
by applying Gauss’ law at the particle surface,
��� /�r�r=a=ZM�B /a2. We apply this procedure iteratively
to compute the bare charge ZM corresponding to a given
effective charge, Zeff.

In the jellium-like models, the pressure in the salt-free
case is proportional to the effective charge, Eq. �3�. The
effect of the introduced macroion correlation hole is
illustrated in Fig. 1. Here, one can see that the pressure in a
salt-free colloidal dispersion becomes smaller in the
m-jellium model as compared to the original jellium result at
all macroion volume fractions. For both highly �Zeff�B /a
=1000� and moderately �Zeff�B /a=10� charged systems,
the relative difference between the two models is maximal
�about 0.3� at the lowest volume fraction and decreases
as the volume fraction increases �it does not exceed 0.15 at
�=0.1�. The relative differences between pressures
from both models are illustrated in the inset of Fig. 1. The
difference between both models decreases with density be-
cause the size of the correlation hole also scales as n−1/3.
Therefore, it is expected that results from both models will
coincide at higher volume fractions. The variation of the ef-
fective charge in both models is also described by the same
equation.

When comparing different colloidal systems, it is conve-
nient to present the effective charge in the form Zeff�B /a
�18�. In Fig. 2�a� we compare the effective macroion charge

as a function of its bare charge for the PB-cell, jellium,
and m-jellium models in the salt-free case. Each model
predicts different values of the effective charges at saturation
�ZM→��. However, for small bare charges all of them re-
cover the correct limiting behavior Zeff=ZM. It is interesting
to note that for the salt-free case at saturation, the system
properties are determined by the single parameter: the
macroion volume fraction, �=4�a3n /3. In Fig. 2�b� we
compare the effective charges at saturation as obtained from
each mean-field model.

The behavior of Zeff in the range ��10−2 can be under-
stood from the gradual compression of the ionic double lay-
ers on increasing density. At the higher densities, in contrast,
the effective charge is increasing because the average elec-
trostatic potential in the bulk �or at least at r�d� approaches
that on the macroion surface, so that the counterion conden-
sation is suppressed. As a result, we observe a minimum in
the concentration dependence of Zeff about ��10−2. This
characteristic behavior can, in fact, be derived from a simple
energy-entropy balance reasoning and is known from
classical polyelectrolyte literature �18�.

The smaller effective charges in the m-jellium model, as
compared to the original jellium model of �21�, follow from
the weaker screening at r�n−1/3. In the modified model the
macroions are excluded from the internal part of the double
layer, which leads to a higher free energy cost of charging

FIG. 1. �Color online� Effect of the macroion correlation correc-
tion to the renormalized jellium models on the reduced pressure in
a salt-free dispersion. The solid and dashed curves show the pres-
sures in the regime of moderate macroion charges �Zeff�B /a=10� as
predicted by the jellium and m-jellium, respectively, and the solid
and dashed curves with symbols correspond to saturated effective
charges �Zeff�B /a=1000�. The inset shows the relative difference
between pressures in the renormalized jellium and m-jellium
models.

FIG. 2. �Color online� �a� Effective charge for a salt-free sus-
pension at a volume fraction of �=0.001 as a function of the bare
charge and �b� effective charges at saturation for charge-stabilized
colloidal suspensions, salt-free case, as a function of the volume
fraction. In both cases, dashed lines are for the PB-cell model,
dotted lines for the jellium model, and solid lines for the modified
jellium model.
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the macroion. In other words, the weaker screening associ-
ated to the m-jellium results in a stronger attraction of the
counterions to the macroion surface.

III. PRESSURE

Within the renormalized jellium model, the equation of
state reads �16�

�P = n + �Zeff
2 n2 + 4cs

2. �3�

After exclusion of the condensed counterions by the charge
renormalization procedure only the free ions contribute
to the pressure �18�. In the salt-free case, cs=0, the equation
of state given by Eq. �3� simply reduces to �P=n�1+Zeff�.
In the low electrostatic coupling regime, where Zeff
coincides with ZM, Eq. �3� recovers the ideal gas pressure
�P�n�1+ZM�. In Fig. 3�a� we compare predictions from the
renormalized and the m-jellium models for the osmotic pres-
sure data from Reus et al. �24�, obtained for deionized sus-
pensions of bromopolystyrene particles. Although the overall
agreement between experiments and both models is good, for
��0.07 the m-jellium approach performs visibly better,
while for higher densities the renormalized jellium model
seems to be a better approximation. Further on, in Fig. 3�b�

we compare the results from both jellium-like models with
data from primitive model simulations for a salt-free asym-
metric electrolyte with an asymmetry in charge 60:1 �we use
the same cluster MC simulation protocol and settings as in
�5� with 80 macroions�. Here we observe that both models
reproduce the pressure behavior qualitatively, while the
m-jellium seems to give a better quantitative agreement in
the wide range of macroion concentrations. An alternative
representation of the same data is shown in the inset of
Fig. 3�b�, where both models are compared to the osmotic
coefficients for the same simulated system. This representa-
tion confirms the better performance of the m-jellium
model. Thus, our model improves the description of the os-
motic pressure for suspensions in the counterion-dominated
screening regime.

IV. STRUCTURE

The effective charge and the screening parameter com-
puted from mean-field models can be used to calculate the
effective pair potential and the structure of charged colloidal
suspensions. We assume the effective pair interaction
between macroions to have the Yukawa form

�ueff�r� = Zeff
2 �B� exp��effa�

1 + �effa
	2exp�− �effr�

r
. �4�

The pair distribution of the macroions interacting through the
effective pair potential, Eq. �4�, can be computed using the
Ornstein-Zernike �OZ� equation �25�,

hMM�r� = ceff�r� + n
 d3r�ceff�r��hMM��r − r��� , �5�

where hMM�r�=gMM�r�−1 and ceff�r� is the so-called effec-
tive direct correlation function �14,26�. An additional closure
relation is needed to solve the OZ equation. In particular, the
Rogers-Young �RY� closure relation can be used to solve the
OZ equation self-consistently �27�. The RY closure enforces
both thermodynamic and density fluctuations to be the same
in order to calculate both the structure and thermodynamics
of a colloidal suspension and it is known to accurately de-
scribe Yukawa-like systems �22�. Technically, this is done by
computing the isothermal compressibility using the virial
route for the OCM, �v

−1= ���PMM/�n�T, where PMM is the
macroion-macroion virial contribution and can be written as

�PMM = n −
n2

6



r=2a

�

g�r�
d�ueff�r�

dr
rd3r . �6�

The isothermal compressibility can be also computed
through the relation �c

−1=1−nc̃eff�q=0� �14�, where c̃eff�q� is
the Fourier transform of the effective direct correlation func-
tion. Then, the RY closure relation enforces both routes to
give the same isothermal compressibility ��v=�c� in order to
guarantee, at least partially, the thermodynamic consistency
�27�.

It is important to note that the OCM pressure is usually
very different from the pressure measured in the full multi-
component electrolyte. This discrepancy follows from the

FIG. 3. �Color online� �a� Pressure as a function of the volume
fraction obtained from the m-jellium approach �solid line� and the
renormalized jellium approximation �dashed line�. Symbols corre-
spond to Reus’ experiments �24�. No adjustable parameters have
been used and the effective charges at saturation are considered. �b�
Pressure as a function of the volume fraction obtained from the
m-jellium approach �solid line� and from the renormalized
jellium approximation �dashed line� with ZM�B /a=19.47 and
�B /a=0.3245. Symbols correspond to primitive model simulations.
Inset: osmotic coefficient for results in �b�.
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prevalence of the microion contribution to the pressure. In
fact, in many cases the macroion contribution is negligible
and the total pressure can be well approximated by the par-
tial pressure of the small ions �18�. Moreover, as we have
seen in the last section, Eq. �3� provides an excellent virial
equation of state for highly charged colloids at low salt. It
therefore can be combined with the OCM to get the thermo-
dynamically consistent description. The effective OCM pa-
rameters can be used, on one hand, to get the osmotic pres-
sure via Eq. �3� and, on the other hand, to predict the
accurate macroion structure. One expects to meet less prob-
lems on the compressibility route �14�. The osmotic com-
pressibility �c is related to the infinite wavelength limit of
the macroion structure factor. Knowing the macroion struc-
ture is therefore enough to compute the correct osmotic com-
pressibility of the multicomponent system. The consistency
between both routes then can be controlled by comparing the
result obtained from the structure factor to �v

−1= ���P /�n�T,
where P is given by Eq. �3�, which obviously gives the same
result in our case.

We would like to note that these simple ideas can be
applied to interpret experimental data. The effective macro-
ion charge is usually extracted from the structure factors
measured in scattering experiments by fitting the scattering
curves by means of an OZ-RY scheme with an effective
Yukawa potential. Our approach can be applied inversely to
predict the equation of state of colloidal suspensions at low
salt via the relation between the effective charge and the
osmotic pressure.

In Fig. 4�a� we compare the radial distribution functions
�RDF� from our primitive model Monte Carlo simulations
�symbols� with numerical results obtained using our OZ-RY
scheme with the m-jellium model parameters �solid lines�.
Also, results from the standard RY route �27� and screening
parameters from the PB-cell model are shown �dashed lines�.
For the sake of clarity, the results with parameters from the
renormalized jellium through the standard RY route are not
shown, however, it has been found that they underestimate
the structure �for a more detailed analysis see �28��. The
highest macroion charge taken in the simulations �ZM=60�
does not bring the system into the fully saturated effective
charge regime. The value for �B /a considered �among oth-
ers� was 0.324. In Fig. 4�a� we clearly observe a good agree-
ment between simulations and m-jellium model results, al-
though still small differences around the main peak of the
RDF for the higher volume fractions ���0.04� can be ob-
served. These small differences might result from the mac-
roion shielding effect, which usually rises the macroion dis-
tribution peak in dense suspensions �29�, and from
counterion correlations, which are strong in this system �5�.
However, our results show a visibly better agreement with
simulations than those obtained with other mean-field ap-
proaches �dashed lines�. In Fig. 4�b� we compare the RDF
from the primitive model simulations �symbols� described in
Sec. III with numerical results obtained using our OZ-RY
scheme with both m-jellium �solid lines� and jellium �dotted
lines� parameters. We observe that the jellium model always
overestimates the structure of the suspension while m-jellium
shows a better agreement. Also, we note that at high densi-
ties the main peak of the pair correlation is predicted less

accurately. It is remarkable that the behavior of gMM�r�
in Fig. 4 is accurately reproduced by our scheme in the
whole range of distances, whereas other mean-field schemes
overestimate the short-range behavior of gMM�r�.

V. CONCLUSIONS

We have introduced a procedure to include macroion cor-
relations into a mean-field theory of screening in charged
colloidal dispersions, which leads to modification of the
effective parameters of the OCM: the macroion effective
charge and screening length. The evaluation of colloidal
effective charges in suspensions with weak screening
is based on the solution to the nonlinear PB equation for the
electric double layer in the presence of other macroions.
Our model represents an extension of the renormalized
jellium approach by Trizac and Levin. It predicts somewhat
lower macroion effective charges, as compared to the renor-
malized jellium approach, which suggests that macroion cor-
relations are important in describing systems with thick
double layers such as deionized colloidal suspensions, i.e., in
the counterion-dominated screening regime.

The proposed model describes well experimental as well
as MC simulation results of thermodynamic quantities in
highly charged colloidal dispersions at low salt. The static

FIG. 4. �Color online� Macroion-macroion pair-correlation func-
tions from primitive model Monte Carlo simulation �symbols� and
from our OZ-RY scheme �see text� with effective m-jellium param-
eters �solid lines�. �a� From the “standard” OZ-RY scheme �see text�
with the OCM equation of state and PB-cell parameters �dashed
lines� and �b� from our OZ-RY scheme with effective renormalized
jellium model parameters �dotted lines�. From left to right, the
packing fractions are �a� �=0.08, 0.01, 0.0025, and 0.00125 and �b�
�=0.089, 0.022, 0.0055, 0.0027, and 0.00069.
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structure of model colloidal suspensions is also accurately
reproduced by an OCM scheme that uses the screening pa-
rameters of the m-jellium model. Moreover, we show that
these effective parameters could be used to predict accurately
the equation of state via the relation between the effective
charge and the osmotic pressure in our model, which can be
used for interpreting experimental results.
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